
TEND TO YOUR KNITTING
EVOLUTION OF A DINOSAUR

THE KNITTING:

• Selectra Industries makers of ‘Active Wear’

• Knitted on high tech machines

• Management of production a problem

▪ yarn to nearly complete garment different from cut ‘n’ sew

▪ tried available software – hosiery was close

▪ called in dinosaurs

A KNITTING MACHINE
Knitting is done inside the box.

The metal hoops support some of the spools of microfiber yarn

SOME OF THE KNITTING
MACHINES AT SELECTRA
Each machine produces a single size garment. Each garment can be
knitted with varying degrees of compression. Selectra refers to this as
‘body engineering’.

THE DINOSAURS

• systems programmers IBM mainframe

• Rexx a known quantity

• firm’s platform was Windows

• so... oorexx

• also oodialog 
rexxSQL

THE NEW SYSTEM

• dialogs for each major step in the production path

▪ sales order entry

▪ knitting

▪ sewing

▪ dyeing

▪ &c

THE NEW SYSTEM

• each dialog tended to be large – 2-4K statements

• business, presentation and data logic in every program

▪ data retrieved from database

▪ presented to user

▪ updated in database for each function

• it worked, but...

OBJECT ORIENTING A DINOSAUR

• pace of change picks up

▪ user experience with early system points up need for changes

▪ users stories changed significantly – the 90% problem

▪ fixed capacities overrun

▪ miscommunication between users and developers

A DINOSAUR EVOLVES

• factoring business logic out of dialog code

• creating objects to model processes

• sharing objects between dialogs

• class methods to create instances

typical UI function
::class dyeOrder subclass rcdialog

::initDialog
expose or.
ord.=self~getOrder(okey)
self~displayOrder(ord.)

::method getOrder
dx=‘select from dye_order_table’
sql_rc=SQLCommand(‘or’,do)
... error checking, handling
return dx.

::method displayOrder
use arg dor.
... ... set fields, display to user

::method saveOrder

AFTER SOME EVOLUTION...

::class dyeOrder

::method orderfromSQL class

use arg key

doq=‘select from table where index=key’

inst=.dyeOrder~new(...)

return inst

::attribute ...

::attribute ...

::method init

use arg ..., ..., ...=default

OBJECTS

• eliminate duplicate code

• enable and simplify communication between dialog elements

• enable (somewhat) simpler changes for new user ideas

• help eliminate hard constraints on numbers

QUESTIONS?

• Thanks

